A Magnetic LAr1-ND

(Work in progress)

Leslie Camilleri

13th November 2013

LAR1-ND Top View

Present concept

Principle

- Replace the Muon spectrometer by a coil around the TPC.
- Fill the whole available space with magnet + cryostat.

Muon momentum measured by bending rather than range.

- An iron return yoke.
- Gain in TPC depth along beam.
- Lose in TPC width because of coil and yoke
- Momentum of other particles can also be measured.
- Keep it simple: try a room temp. magnet instead of s/c one.

Would be the First experiment with a magnetic LAr TPC! (Other than Tests)

NOTE: This is being considered as one option for the LBNE Near detector.

- Could generate collaborators.

Based on the NOMAD concept

Magnet: UA1 → NOMAD→ T2K near det

Built in 2 moveable halves

Horizontal field:
Perpendicular to beam 0.5T
Uniform

End (√) view

Iron return yoke

Continuous coil→ Solenoid

NOMAD → LAr1-ND

NOMAD

Field: Horizontal (0.5T)

Dimensions: $7.0 \times 3.6 \times 3.1 \text{ m}^3$

Detector Density: 0.1 gm.cm⁻³

Radiation Length: ~ 5m

Detector mass: 2.7 tons

LAr1-ND

Vertical (0.5T?)

Maximum: 6.5 x 6.4 x 4.9 m³

1.4 gm.cm⁻³

0.14m

77 tons

Top View

Parameters: Resolution \rightarrow B

- Along the beam direction drift is 1.6mm/microsec.
- 0.8mm per time tick at 2MHz. \rightarrow 1mm resolution (ϵ) along drift per digitizing. (Better with fitting?)
- Curvature:
- k = 1/R (bending radius) = 0.3B/p B- Field (T), p = momentum
- Errors in curvature:
- Resolution:
- $dk(res) = (\varepsilon/L^2) \sqrt{720/(N+4)}$ L = Track length, N = # measurements
- Multiple scattering:
- $dk(ms) = (0.016(GeV/c)/Lp\beta) V(L/X_0 X_0 = rad. Length (140mm)$
- Overall: $dk = \sqrt{(dk(res)^**2 + dk(ms)^**2)}$

Resolution and Multiple scattering errors

Multiple scattering errors dominate

Ignore Resolution errors: k/dk = k/dk(ms) = [0.3B/p] / $[(0.016(GeV/c)/Lp\beta) V(L/X_0)]$ = $[0.3B L]/[0.016V(L/X_0)] \rightarrow$ For $\beta \sim 1.0$ Independent of p.

For k/dk = 3
$$\sigma$$
 \rightarrow B = (0.16/L) $V(L/X_0)$

To measure p at 3σ over 1m \rightarrow B = 0.43T.

13/11/2013 Leslie 9

Track Length over which p can be measured

For a 3.2m long TPC, B=0.5T

- Below ~ 0.3 GeV/c: range < 1m \rightarrow Cannot measure p at 3 σ .
- But can measure through range over a significant portion of TPC.

Charge measurement:

For a 3.2m long TPC, B=0.43T

- We have a 2.7 x 10^{-3} probability of the momentum being outside of 3σ .
- But only a 1.35 x 10⁻³ probability of getting the charge wrong.
- If we were satisfied with a probability of getting the charge wrong of 2.2%, (one sided 2σ) we would only need to measure the momentum over 0.68m instead of 1m.

Depends on the physics.

How thick a Return yoke?

- 0.42T Flux coming out of the coil over 5.5m will have to be channeled through a thickness of iron t at the top, bottom and sides.
- Assuming that iron saturates at **1.8T**, $1.8 \times t = 0.42 \times 5.5 \rightarrow t = 1.3m$.
- Iron return on either side of the coil, they each need to be 0.65m thick.
 Same for Top and Bottom iron slabs.
- Adding a \sim 20cm coil, we lose 2 x (0.20+0.65) = **1.7m.**
- TPC would go from 5.4m to 3.7m width.
- In depth we would gain: Spectrometer $-2 \times 10^{-2} \times$
- So TPC's depth would go from 2.3m to 2.9m.
- TPC overall volume change $(3.7x2.9)/(5.4 \times 2.3m) = 0.86$.
- 14% loss would be in a less dense v flux than
 TPC gain area. → Less effective loss.
- The Top slab would be removable for access to the TPC.
- The Bottom slab could replace part of the concrete support.

Top View

Current/turns to produce B=0.42T

- B (0,0) = centre of solenoid
- Length = L = 6.5m
- Radius = R Rectangular ~ 6.4m x 4.9 m $\rightarrow \pi R^2 \rightarrow R$ (effective) ~ 3.2m
- Number of turns/m = n = 40/m
- Current = I = 3200 A
- 0.42T = B = μ_0 nI L/ $\sqrt{(L^2 + 4R^2)}$ = $(4\pi \times 10^{-7})$ nI $\times 6.5/\sqrt{(6.5^2 + 4\times 3.2^2)}$
- $(4\pi \times 10^{-7}) 40 \times 3200 \times 6.5/\sqrt{(6.5^2+4\times3.2^2)}$

 $nI = 4.7 \times 10^5 \text{ amps.turns/m} \sim 4700A \times 100 \text{turns/m}$

Problems

- Cost? Needs to be worked out. → Engineering.
 (Note that we save on spectrometer....)
- Time scale?
- Power supply?
- Demineralized water? Any water in SciBooNE enclosure?
- Does it compromise any physics? (Curling tracks, widening of showers,).
- Does it compromise any of the cryogenics, electronics, ...?
- Can we reduce the height (length) of the magnet?
- How does it fit with the foam insulation?
- Have been in close contact with Bruce.
- Bruce has been in contact with Craig and Jim Kilmer.
 - → Existing magnets? Existing iron?

Back up

Based on the NOMAD concept

Horizontal field: Perpendicular to beam 0.5T

Parameters: Power

- How much power would it require?
- NOMAD used up 5MW.
- This will be a bigger magnet.
- Ohmic resistance: NOMAD had 0.0576 ohms for
 - a) Length of 7.0m compared to 6.5m here. \rightarrow about the same
 - b) Circumference of 3.6 x 3.08 compared to 4.9 x 6.4 \rightarrow x 31/(11) = 2.8
- Ohmic resistance = 0.0576 x 2.8 = 0.16 ohms.
- Power: 5MW x 2.8 = 14MW. Assuming same current.
- NOMAD coil: 5.4 x 5.4 cm² Al bars with a 2.3cm channel for cooling.
- Making the coil out of Copper reduces the resistance by:
 - 1.68 x 10⁻⁸ Ω.m/2.82 x 10⁻⁸ Ω.m = 0.596 \rightarrow 8 MW.
- Water (demineralized) flow: 15 liters/sec for 0.6MW x 1.6 for 1.0 MW?